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We investigate the ground-state properties of two lines with "on-site" repulsion 
on disordered Cayley tree and (Berker) hierarchical lattices, in connection with 
the question of multiple "pure states" for the corresponding one-line problem. 
Exact recursion relations for the distribution of ground-state energies and of the 
overlaps are derived. Based on a numerical study of the recursion relations, we 
establish that the total interaction energy on average is asymptotically propor- 
tional to the width 6 of the ground-state energy fluctuation of a single line for 
both weak and strong (i.e., hard-core) repulsion. When the length t of the lines 
is finite, there is a finite probability of order t - "  for (nearly) degenerate, non- 
overlapping one-line ground-state configurations, in which case the interaction 
energy vanishes. We show that a = co (6 ~ t ~) on hierarchical lattices. Monte 
Carlo transfer matrix calculation on a (I + l)-dimensional model yields the 
same scaling for the interaction energy but an a different from co = 1/3. Finite- 
length scalings of the distribution of the interaction energy and of the overlap 
are also discussed. 

KEY W O R D S :  Directed polymer; disorder; hierarchical lattice; overlap; rare 
event; replica. 

1. I N T R O D U C T I O N  

The problem of directed lines (also known as directed polymers) in a 
disordered potential has been a subject of recent interest due to its 
application to flux-line pinning in high-To superconductors ~1-4~ and due to 
its fundamental role in the theory of disordered systems. ~5 ,o~ A prototype 
system is that of two lines with a short-ranged repulsive interaction (see 
Fig. 1 ). In a continuum formulation, the configuration of the two lines is 
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Fig. 1. Two directed lines in a disordered medium with (a) one common endpoint and 
(b) two common endpoints. 

specified by their transverse displacements xl(t)  and x2(t). The energy of 
the system is given by 

H=H,({x,})+H2({x2})+Hi,t({x,-xz}) 

where 

H2({x})=I dt[~ (dx~2\ dt/ 
Hi"t({x}) = I dt V(x) 

(1.1) 

+ e(x , t ) ]  (1.2a) 

+ e ( x , t ) l  (1.2b) 

(1.2c) 

Here KI and K 2 are the line tensions, e(x, t) is a (e.g., Gaussian) random 
potential with a short-ranged correlation, and V(x) is the potential for the 
interaction of the two lines. Typical questions one asks are: (a) do the two 
lines form a bound state, and (b) how does the excess energy due to inter- 
action vary with the length of the line? etc. 

A limiting case of (1.1) is K~ = oo and K2 finite. As line 1 becomes 
infinitely stiff, it acts as a columnar defect that interacts with line 2 through 
the potential V. The latter problem has been examined recently by several 
groups and a consensus concerning question (a) has emerged. 13'~1 t31 It is 
plausible that this case is representative of the general situation K~ 4: K2, 
since the ground-state configurations of a single line at different values 
of K are expected to have little overlap with one another when the line is 
sufficiently long. 
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A different situation arises when the two lines are equally flexible, i.e., 
K~ = K2. Due to the presence of disorder, it is not possible to reduce this 
case to that of one line in a columnar potential using relative coordinates. 
The fact that the ground state of (l.2a) is also the ground state of (l.2b) 
introduces an effective attraction between two lines which then compete 
with the repulsive part (1.2c). (This effect is manifest in replica treatment 
of the problem; see refs. 1, 3, and 7.) From the properties of the one-line 
ground-state, Parisi tSI and M6zard 191 proposed three possible scenarios in 
the case of a weak repulsion: 

(i) There is a single deep valley of the energy functional (1.2a) where 
the ground state lies. The two lines form a bound state in the valley, with 
an excess energy E i n  t ~ t, where t is the length of the line. 

(ii) The energy functional (l.2a) has multiple deep minima which are 
almost degenerate but well separated from each other. This corresponds to 
"replica symmetry breaking." The formal attraction disappears, and the 
two lines go to different valleys. The excess energy Ein t = O ( 1 )  as t ~ c~. 

(iii) The energy functional (1.2a) has multiple deep minima, but the 
energy gap between them grows as t '~. Thus only a single valley is thermo- 
dynamically accessible, but other valleys are relevant for the two-line 
problem. In particular, when the lines are sufficiently long, they minimize 
their overlap by going to different valleys, giving rise to an excess energy 

Ein t ~ t ~. 
The calculations performed by Parisi and M6zard in (1 + 1) dimen- 

sions suggest that (iii) is most likely the case, but (ii) occurs occasionally, 
with a probability of order t -" .  This rare event is not quite sufficient to 
produce a broad distribution of overlaps which is typical for spin-glasses, 
but would dominate the response to an applied transverse field when a = 09, 
where 09 is the energy fluctuation exponentJ 9'~~ For two repulsive lines, 
the above picture leads to the expectation that any small but finite inter- 
action is able to drive them apart, and that the increase in the total energy 
is of order t ~. Numerical simulations by M6zard suggest that, in (1 + 1) 
dimensions, cb = 09 = 1/3. 

In this paper we investigate the ground-state of a system of two 
repulsive lines on the Cayley tree (Fig. 2(a) and on the (Berker) hierarchi- 
cal lattices (Fig. 2b) with disorder. The advantages of these lattices is that 
exact recursion relations for quantities of interest can be derived and 
iterated numerically to any desired accuracyJ 5'141 Here we shall focus on 
the distributioh of the excess energy E i n  t in the ground state of the two-line 
system, and the distribution of the overlap of (nearly) degenerate ground 
states of the one-line system. Our results in general support and further 
quantify the picture proposed by Parisi and M6zard for the (1 + l)-dimen- 
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sional case. As a comparison, we present in addition some Monte Carlo 
transfer matrix results for two lines on a (1 + 1)-dimensional lattice with 
hard-core repulsion. Surprisingly, we found in this case a = ( =  2/3. 

Hierarchical lattices are often thought of as approximations to finite- 
dimensional lattice on which the Migdal-Kadanoff  transformation becomes 
exact. 1~5~ Here we would like to emphasize a new perspective in relating 
hierarchical lattices to the finite-dimensional ones when the object under 
consideration, i.e., a directed line, is spatially extended and intrinsically 
anisotropic. Roughly speaking, one can view a hierarchical lattice as arising 
from a partition of a finite-dimensional regular lattice in such a way that 
the number of branches b is the same (in a statistical sense) as the number 
of independent competing paths in real space on a given scale. Obviously 
this number depends on the dimensionality of the regular lattice and also 
on the transverse fluctuations of the line (i.e., the region "seen" by the line), 
but a precise relation is not known. (Otherwise we would have solved the 
problem!) On the hierarchical lattice, the branching and competition occur 
on all levels, mimicking scale invariance in real space. Thus, from a 
phenomenological point of view, the basic physics of a directed polymer in 
a d-dimensional disordered medium is captured by the corresponding 
model on the hierarchical lattice, although we do not know how b is 
related to d. Following a similar line of thought, it is reasonable to expect 
that the problem of two interacting lines with the two pairs of ends tied 
together (see Fig. lb) can be faithfully represented on the hierarchical 
lattice, which will be specified in detail below. 

The paper is organized as follows. In Section 2 we introduce the model 
and derive recursion relations for the distribution of the ground-state 
energies and of the overlaps. Section 3 presents results of a numerical 
investigation of the recursion relations on the Cayley tree. Results on the 
hierarchical lattices are discussed in Section 4. In Section 5 we discuss 
results of a Monte Carlo transfer matrix calculation in ( i+  1) dimensions. 
Section6 contains a summary of main findings of the paper. An 
approximate calculation of the ground-state energy of a single line on the 
Cayley tree using rare-event statistics is presented in the appendix. 

2. THE M O D E L  A N D  R E C U R S I O N  RELATIONS 

2.1. The Mode l  

Let us first recall the problem of a single directed line on the Cayley 
tree with disorder. ~5~ The tree is arranged hierarchically as shown in 
Fig. 2a, with the root on top and symmetric twofold branching at every 
integer distance from O. The allowed configurations of the line are no- 
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Fig. 2. (a) The Cayley tree with twofold branching at every integer distance from the root 
O. A directed line takes a no-return path from the root to any of the bottom branches. (b) 
The (Berker) hierarchical lattice at b = 2. A directed line takes a no-return path from A to B. 

return paths that join the root  and any of the bot tom branches. To each 
bond on the tree, one assigns a random energy e whose distribution is 
given by p~(x). The energy of a path is simply the sum of the energy of 
bonds on that path. 

A similar model has been introduced by Derrida and Griffiths on the 
(Berker) hierarchical lattice) ~4~ The hierarchical lattice is defined 
iteratively. Upon  each iteration a bond is split into b branches, with two 
linked bonds on each branch. The case b = 2 is shown in Fig. 2b. A directed 
line is a no-return path that joins the upper and lower ends of the lattice. 
The number  of bonds on such a path at generation k is t = 2 *. The energy 
of a path is given by the sum of random bond energies "seen" by the path. 

For  the problem of two lines, the allowed configurations for each line 
are the same as above. The total energy of  the system is the sum of bond 
energies of each line plus an interaction energy. Here we consider only a 
contact  interaction. When two lines share a given bond, there is an inter- 
action energy V. For  reasons which will become clear later, we take V to 
be a quenched random variable with a distribution p v(x). The total inter- 
action energy is the sum of the interaction energies on shared bonds. 

One can introduce a slightly more general model by considering still 
the same set of line configurations but a different way of assigning the 
energy to a given configuration. The energy of a bond is a function of the 
number  of lines n that go through it, 

ca(n) = e6,.~ + r6,,.2 (2.1) 
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Here e and r are quenched random variables with a joint probability dis- 
tribution p(e, r) which may or may not factorize. In the special case defined 
above we have r = 2e + V and hence 

p(s,  "r) = p , (~ )  P v ( r  - 2~) (2.2) 

The total energy of the system is the sum of all bond energies en. In this 
paper we shall consider exclusively nonattractive interactions, for which 

p(x, y < 2x) - 0 (2.3) 

A remark on notation. For  quantities that depend on the length t of 
the line, we shall use t as a subscript on a Cayley tree, but the lattice 
generation k ( t = 2  k) as a subscript on the hierarchical lattices. The sub- 
script is sometimes omitted when all quantities in an equation have the 
same index. 

2.2. Ground-Sta te  Energy Distr ibution 

Consider the Cayley tree as shown in Fig. 2a up to a distance t. Let 
El  "~ be the ground-state energy of n-lines on the tree, n = 1, 2. Not ing that 
the tree can be decomposed into two subtrees of length t -  1, each with an 
additional bond attached to the top, one may write 

El,"= min{E~,'), + ~, E',l~ ', + d} (2.4a) 

El2'=min{El,~,+r,E;12',+V, El,~,+e+E;l~',+e'} (2.4b) 

Here unprimed and primed quantities on the right-hand side of  (2.4) refer 
to the left and right branches of  the tree, respectively. For  nonattractive 
interaction we have, in a given realization of disorder, 

E?'>_.2E?' t2.5) 

Derrida and Griffiths ct4~ have shown that a simple way to analyze the 
one-line problem defined by Eq. (2.4a) is to introduce a probability dis- 
tribution for the ground-state energy, for which a recursion relation can be 
obtained. In our case, E ~ and E ~2~ on the same tree are correlated. It is 
thus necessary to consider the joint probabilities 

P,(x, y)=_ Prob{E~,l' ~> x and El  2' >~y} (2.6a) 

Q,(x,y)-Prob{E~,~,+~>~xandEl,~,+r>~y} (2.6b) 
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From Eq. (2.5) it follows that 

P(x, y < 2x) = P(x, 2x) (2.7a) 

Q(x, y < 2x) = Q(x, 2x) (2.7b) 

It is easy to see that Q, can be expressed in terms of P,_ 1 and p as 

Q,(x,y)=Idxldy~p(x~,yl)P,_l(x-x~,y-y~) (2.8a) 

The remaining task is to relate P, with Q, to complete the set of recursion 
relations. This is done below. 

Consider the inequalities on the right-hand side of (2.6a). Due to 
Eq. (2.7a), one 'only needs to focus on the case y>~2x. To fulfill the 
inequalities, it is necessary and sufficient that (i) E~,~2~+e.>~y/2 and 
E',~ or (ii) x<~E(,~,+~<y/2, E~,~,+~>~y, and E I , ~ , + ~ +  

_< ~-,ll) + ~ ' < y / 2 ,  E',(2) I +r '>~y ,  E 'l~) +~ '>~y simultaneously, or (iii) x - . ~ , _ ,  t - - I  

and EI,~, + e + E',~I~ + e' ~>y simultaneously. It is easy to convince oneself 
that the above three situations are mutually exclusive. Hence we have 

P,(x,y)=Q 2, -~,y + 2  I.~ dxl c~x~ _]Q,(y-x~,y) (2.8b) 

Let us now turn to the minimization problem on the hierarchical 
lattices. As before, we introduce the joint probabilities for the one- and 
two-line ground-state energies, 

Pk(x, y) =-- Prob{E~')  ~ > x and E~ z~ >~ y} (2.9a) 

Qk(x,Y)=Prob{E~'~-, + E?'l,>~xandE~2~, a- ':''(21-~k-,~'/ ~ (2.9b) 

Primes indicate a different realization of the bond energies. From the above 
definition we have 

Qk(X,y)= I dxldylo2Pk-t(xl'yt) Pk- l (x-xL,y-y l )  (2.10a) 
Oxt Oyl 

On the hierarchical lattice of generation k, there are similar relations 
for the ground-state energies as Eqs. (2.4), except that now each branch 
consists of two linked lattices of generation k -  1. Using a similar decom- 
position of the phase space as done above for the tree, we obtain, for 
y >~ 2x, 

Pk(X,y)=Q~ (y ,y)+ b !i'/2-~ [ OQk(x,,Y) _] Qk(y_x,,y,b-, 

(2.10b) 
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At k = 0, which is the case of a single bond, we have 

f: Po(x, y)= dx~ d)q O(x~, y~) 
-" 3' 

(2.11) 

2.3. Overlaps 

We consider here only the overlap of two noninteracting lines. We 
shall use s for the number  of bonds shared by the two lines in the ground 
state and ~t(s) for the distribution of s. When the ground state is non- 
degenerate, we have s = t (full overlap). In the case of a degenerate ground 
state, the two lines can take different configurations, so that s < t. As a 
convention, s in such a case is chosen to be the smallest from the set of 
possible values. 

It is not  obvious but nevertheless true that s and the one-line ground- 
state energy E (~) are in general correlated. Thus to obtain rt(s) one has to 
consider the joint probability 

/5(x; 1) = P r o b { E  (') >~x and s~> 1} (2.12) 

The overlap distribution ~ is given by 

rc(s)=~(-~;s)-P(-~;s+ 1) (2.13) 

On the Cayley tree, the following recursion relations are seen to hold 
for s~> 1: 

O_,(x;s)=f dx~ p~(x,)P,_~(x-x,;s- 1) (2.14a) 

P'(x; s)= 2 f~ OO'(Xl; S)] o'(x~ + O; ~ (2.14b) 

Note that Q,(x; O) = Q,(x; 1 ) on the tree. For  s = 0, (2.14b) is replaced by 

/~,(x; 0)  - P,(x) = 0 , ( x ;  0)  2 (2.15) 

i.e., the relation for the integrated probabil i ty/5,(x)  of E t~ alone. 
For  two noninteracting lines on the hierarchical lattices, a similar set 

of recursion relations hold. For  st> 1, two lines must be on the same 
branch and the ground-state energy on this branch must be lower than 
those on other branches. This leads to the result, for s ~> 1, 



Two Repulsive Lines on Disordered Lattices 589 

Oilk_ ~(X~; S) 
Qk(x; s) = - I d x j  ilk_,(x--xl;O) 

dx~ 

�9 - l ~  O[ilk_,(xl;l+l)__ilk_l(Xj;l)]ilk_l(X__Xl;s__l ) + ~ dxl 
/ = 0  OXl 

(2.16a) 

ilk(X; s) = b f~176 dx' OQ-k(X' ; S!] O'k(x' + O; O)b- t (2.16b) 

For s = 0 ,  Eq. (2.16a) still holds (omitting the sum on the right-hand side), 
while Eq. (2.16b) is replaced by 

ilk(x; O) = ilk(x) = Qk(X; 0) b (2.17) 

Note that ilk(x; s) is determined by those ilk-~(x; s') with s' ~<s. 

2.4.  N u m e r i c a l  P r o c e d u r e  

The results presented in the following sections are obtained through 
numerical iteration of the recursion relations given above. For this purpose 
we find it convenient to restrict the random bond energy e and the inter- 
action energy V to a discrete set of values. Specifically, we take 

p~(e) = p6(e-  1) + (1 - p )  6(e) (2.18) 

i.e., e = 1 with probability p and e = 0 with probability 1 - p .  Two types of 
distribution pv for the interaction energy V are considered. The first type 
is given by 

pv (V)=r6(V-  1 ) + ( 1 - r ) 6 ( V )  (2.19) 

i.e., V-- 1 with probability r and V--0 with probability 1 - r .  Although V 
takes only discrete values, the strength of the interaction can be tuned by 
varying r. The second type is that of hard-core repulsion, where p v ( V ) =  0 
for any finite V. In both cases, the joint distribution for one-line and two- 
line energies is given by Eq. (2.2). 

As noted by Derrida and Grittiths, Ij4~ a potential problem associated 
with distribution of the type (2.18) is that bonds with the lowest energy 
(0 in this case) percolate on the lattice. When this happens, the minimiza- 
tion problem becomes qualitatively different. In our model, percolation 
takes place when the probability p for having a high-energy bond becomes 
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less than a threshold value p,.. On the Cayley tree, p,.v= 1/2. On the 
hierarchical lattice, p,, satisfies 

p, .= [1 - (I _p,.)2]b (2.20) 

This threshold is given by p , .=(3-x /~) /2=0.3819 . . ,  for b = 2 ,  p c =  
0.6106... for b = 3 ,  etc. For b~>l we have p , . = l - b - ~ - � 8 9  
Results presented in this paper are for p = 0 . 8  on Cayley tree and the 
hierarchical lattice at b = 2; p = 0.9 on the hierarchical lattice at b = 4; and 
p--0.95 on the hierarchical lattice at b- -8 .  

To implement the recursion relations on computer, one first writes 
them in a discrete form, which we shall not elaborate here. The maximum 
of the ground-state energy for a single line is simply the length of the line, 
and the maximum of the ground-state energy for two lines is twice this 
value. As the length of the line increases, the memory space needed to code 
the joint probabilities expands rapidly. It turns out that the probability 
distribution decays exponentially at the tails. One way to save memory 
and computer time is to truncate the tails. On the hierarchical lattice, it 
is sufficient for our purpose to keep the truncation error below 10 -~2 
Double-precision representation is used in the iteration process. 

The situation on the Cayley tree is quite different. It turns out that the 
minimization problem is dominated by rate events. (See discussion in the 
appendix.) Hence great care much be taken in dealing with the truncation 
error at the lower end of the distribution. In this case we used R E A L .  16 
representation, which allows for 33-34 effective-digit manipulations. 

3. CAYLEY TREE 

3.1. Noninteract ing Lines 

This case has been analyzed in great detail by Derrida and Spohn ~sl 
and by Fisher and Huse. ~j~ Their main findings for the low-temperature 
phase many be summarized as follows: 

(i) The distribution of the ground-state energy E~,~ has a finite width 
and exponentially decaying tails. Specifically, the probability /5(x) as 
defined by Eqs. (2.12) and (2.15) approaches a "traveling wave" form at 
large t, 

P , (x )  = W(x-~,) (3.1) 

where 

7 , -  (E~, tj ) ~-Cot + C In t (3.2) 



T w o  Repulsive Lines on Disordered Latt ices 591 

Here and elsewhere <. ) denotes average over different realizations of the 
disorder. For x ~ - ~ ,  we have 

1 - W ( x ) ~  - x e  q'x (3.3) 

The coefficient eo is the ground-state energy per unit length, and C and ~, 
are positive constants. Equation (3.1) in particular implies that the mean- 
square deviation of El  ~) is bounded as t ~ co, in contrast .to the problem 
on the hierarchical lattice at finite b. 

(ii) In the limit t--* ~ ,  the overlap q = s i t  between the ground-state 
and the second lowest energy state (which is simply another ground state 
in case of degeneracy) is either 0 or 1. Fisher and Huse I~~ studied the 
energy difference A E  between the ground-state and the minimum-energy 
state which branches off from it at a distance s <~ t from the origin O (see 
Fig. 2a) and found that d E ~ s  ~/2 and that the probability for A E =  O(1) is 
of the order of s -  3/2 

For the above statements to hold, the distribution p~(x)  for the single- 
bond energy should have a "well-behaved" tail on the x < 0 side, as evident 
from discussions presented in the appendix. This is not a worry in our case. 
There are, however, a few minor differences introduced by the discreteness 
of energy levels in our model. First, since x in (3.1) is pitched on integers, 
the mean-square deviation of the ground-state energy in general exhibits a 
quasiperiodic oscillation, though Co, C, and ~, should have well-defined 
limits as t ~  ~ .  Second, there is a finite probability for ground-state 
degeneracy, giving rise to incomplete (e.g., zero) overlap at zero 
temperature. This property of the discrete model is shared by models 
considered in refs. 5 and 10 if we extend the notion of degeneracy to those 
states whose energies are within a certain finite range from that of the 
ground state. 

Our numerical investigation of the model defined by (2.18) generally 
confirms the expected behavior mentioned above. Figure 3 shows the dis- 
tribution of E~, ' ~ -  ?, for t = 256 and 512 (solid circles). The points appear 
to fall on a single curve, in agreement with (3.1). The left end of the curve 
is well approximated by 

W ' ( x )  ~- -2(~,x  + 1 ) e q'" (3.4) 

with ~, = 2.47 (shown by dashed line). Also shown in Fig. 3 are the partial 
probability distributions for EC,~l-?, at s = 0  (open circles) and s = t  

(crosses). The" case s = t  corresponds to a nondegenerate ground state, 
which has a lower mean energy than the average. Indeed, the lower end of 
the full distribution is dominated by those with s = t. In contrast, the upper 
end of the distribution is dominated by those with s = 0. 
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We have checked that (3.2) describes our data well for t >~ 4. Plotting 
y , / t  against t -  ~ In t, we obtain e0 "~ 0.253 and C "-~ 0.59. The values for eo 
and ~b agree well with the calculation presented in the appendix, which 
yields eo=0.25298.. ,  and ~k = 2.469... at p = 0 . 8 .  The amplitude of the 
logarithmic correction C, however, does not come out correctly from the 
approximate analysis. 

Let us look now at the overlap distribution It(s) shown in Fig. 4a for 
t = 2 k, k = 6 ..... 9. The distribution is peaked at both ends, s = 0 for no over- 
lap and s = t for full overlap, with It,(0) -~ 0.28 and It,(t) ~- 0.23 as t ---, ~ .  
In the neighborhood of the two peaks, there is a power-law decay 
I t , ( s ) ~ s  -3/'- and I t , ( t - s ) ~ s  -3/2, s ,~ t. While the distribution tends to a 
limiting form at both ends, the center part  decreases with increasing t. In 
Fig. 4b we plot t3/2it,(s) against the fractional overlap q = s / t ,  using the 
same set of data as in Fig. 4a. The collapse of the curves indicates that, 
except for s = 0 or t, the distribution at large t obeys scaling 

lt,(s) .,. t -3/2 ~(s/ t )  (3.5) 

where ~(x), ~(1 - x ) ~  x -3/2 for x ,~ 1. In the limit t -o  co, Povp(q)= tn,(qt)  
approaches a sum of two 6-functions at q = 0 and q = 1. This result is in 
agreement with that of ref. 5. 

3.2.  H a r d - C o r e  R e p u l s i o n  

Another limiting case is that of  hard-core repulsion between the two 
lines. In this case the minimum in Eq. (2.4b) is given by the last term on 
the right-hand-side, 

El  21 = E ~ l  + e + E ' ~  J~ + e' (3.6) 
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Using (2.4a) and (3.6), we easily verify the following expression for the 
interaction energy E i n t t =  b'?. (2) 9FI') in the ground state: 

Ein, . ,  = ~t-lb"(l) +e--E',ll~l--e'l (3.7) 

For the model defined by (2.18), Ein t takes only nonnegative integer values. 
Let t/lint(i ) be the probability that gin t = i. For i=0 ,  7'~,t(0 ) is simply given 
by rt(0), the probability that the energy of the two branches is degenerate. 
On the other hand, ~tJ int ( i>0 ) is twice the probability that the energy of 
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Fig. 5. 
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Distribution of the interaction energy for two lines on the Cayley tree at large t. 

one branch is i units higher than the energy of the other branch. Thus we 
have 

~int.t(0) = ~ [(2,( j)  -- (~,(j + 1)] 2 (3.8a) 
J 

~ i , t . , ( i ) = 2 ~ [ 0 , ( J ) - Q , ( J + l ) ] [ Q , ( J + i ) + 0 , ( J + l + u ) ]  (3.8b) 
J 

where Q , ( i ) -  Q,(i;0) is given by a discretized version of (2.14a). Note  the 
factor 2 difference between (3.8a) and (3.8b). 

From Eq. (3.6) it is easy to see that, as t -* co, 

<Ein t ) = 2 ( ( ~ )  -- eo) = 2 (p - -  eo) (3.9) 

At p = 0 . 8 ,  (Era , )  ~ 1.094, in agreement with direct measurement. The dis- 
tribution of E~,, at large t is shown in Fig. 5 (full circles), together with 
those for weak repulsion discussed below. 

3 . 3 .  W e a k  R e p u l s i o n  

Consider now the model defined by Eqs. (2.18) and (2.19) at small r. 
For  two lines sharing a path up to a distance s from the root  O, the mean 
interaction energy is rs. By considering a configuration where both lines are 
in the one-line ground state, we obtain an upper bound for the interaction 
energy, 

(Eint.,) <~r s s~,(s) (3.10) 
s = 0  
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Fig. 6. Average interaction energy of two lines on the Cayley tree at weak repulsion. Each 
curve corresponds to a given value of the interaction strength r. 

Here n, is the overlap distribution for zero interaction as discussed in 
Section 3.1. 

Since the sum in (3.10) is dominated by those at s close to t, we expect 
a linear increase of the interaction energy with t for r t  < 1. When rs  

becomes of order 1 or larger, it is more favorable for one or both lines to 
get out of their ground state and seek one which has a smaller overlap, 
thus a smaller interaction energy. Figure 6 shows the mean interaction 
energy ( E l , i )  against r t  for r=0 .001 ,  0.005, 0.01, 0.05, and 0.1. The data 
collapse suggests a scaling form, 

( E i , c , )  ~ ~cay(rt) (3.11) 

where ~cay(x) ~ x for x ,~ 1 and ~cay(X) ~ const for x >> 1. The plateau part 
of the curves at large t does not collapse completely. This can be attributed 
to the-finite probability for small overlaps. Since n(s) decays as s -3/2  for 
smal ls ,  the sum in (3.10) up to s " ~  1/r  yields the following expression for 
the interaction energy at large t when r is small: 

< Ein t ,~  > "" et + e2r I/2 (3.12) 

From our data we determined e, ~ 0.19 and e2 = 0.37 at p =0.8.  
The distribution of the interaction energy at large t is shown in Fig. 5 

for a set of r values. It appears that there is a limiting form as r ---, 0. 
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4. H IERARCHICAL LATTICES 

4.1. Noninteract ing Lines 

Compared to the situation on Cayley tree, our knowledge on the 
properties of the ground state of a single line on a disordered hierarchical 
lattice is mainly numerical, although a perturbative scheme for b close to 
1 has been developed by Derrida and Griffiths ~4~ to provide some analyti- 
cal insight. The general picture t14't6't71 may be summarized as follows. 

(i) As the generation k of the lattice increases, the distribution of the 
ground-state energy E t'), in our notation --0Pk(x)/dX, tends to a scaling 
form, 

O'k(x) "~ ~5~- 'Fb (4.1) 

where ) ,k=(E~ ~1) and 6 ~ = ( ( e ~ " ) 2 ) -  (E'~'�91 2. The scaling function 
Fb(x) is independent of the distribution p,(x) of random energies e, 
provided p~.(x) decays to zero sufficiently fast as x - - * - o o .  (This is in 
contrast to the behavior on the Cayley tree, where W is not uninversai. It 
can be understood from the fact that here p, does not enter the recursion 
relations explicitly.) The root-mean-square fluctuation of the ground-state 
energy 6k grows as a power law of the length t = 2 k, 

6k ~ t '~ (4.2) 

where w(b) is a monotonically decreasing function of b, starting at 
oJ(1) = 1/2. 

(ii) Cook and Derrida I)6) studied the overlap distribution at a finite 
temperature, and found only a single peak whose position depends on 
temperature, suggesting absence of nontrivial ground-state degeneracy. 

In the following we present results obtained from the iteration of 
Eqs. (2.16) and (2.17) for b = 2, 4, and 8. The mean ground-state energy is 
generally found to take the form 

yk =eot + Cl6k + O(1) (4.3) 

where cl(b) is a universal amplitude ratio which depends only on the 
branch number b. Values of c~ for b = 2, 4, and 8 are listed in Table I, 
along with w(b). 

In Fig. 7 we plot the overlap distribution Povp(q, t) = tn(qt) for b = 2, 
p=0 .8 ,  and t =  128 ..... 2048. The probability density has two main peaks, 



T w o  Repulsive Lines on Disordered Lattices 597 

Table I. Energy Fluctuation Exponent to and 
Scaling Ampli tudes on the Hierarchical Lattice 

b r Cl C2 

2 0.2988 1.033 1.155 
4 0.205 1.77 0.94 
8 0.156 2.45 0.9 

one at q = 0 ,  the other  at q = q t ,  qt -,~ 0.45. The peak at q = 0  contains only 
a single point  s = 0, with 

Povp(0, t ) ~  t I -,o (4.4) 

The peak at q = q~ has a width 6q ~ t -'~ and an ampl i tude  p ropor t iona l  
to t% This peak tends to a del ta  function as t ~ cr In addi t ion,  there is a 
set of minor  peaks located at q i~ -q~ /2  i-~,  i = 2 , 3  ..... etc., which arise 
natural ly  in the i terat ion process as combina t ions  of the two major  peaks. 
These peaks are expected to have vanishing weight in the limit t --* ~ .  

The behavior  of the over lap d is t r ibut ion  appears  to be similar at b = 4 
and b = 8, a l though the secondary  peaks are more p ronounced  than in the 
b = 2 case. 

102 ! 

~ 10 I 

i0 o 

i~., 10-' 

10_2 

1 0 - a  . . . .  ~ . 0  

q 

Fig. 7. Distribution of the overlap in the ground state of a single line on the hierarchical 
lattice at b=2,  p=0.8, and t=  128, 256, 512, 1024, and 2048 (from right to left at the right 
tail). The peak around q ~-0.45 sharpens as t increases. 

822/77/3-4.-6 
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4.2. Hard-Core Repulsion 

We now turn to the case of two lines with a hard-core  repulsion on the 
hierarchical  lattice. Even though the two lines are not  al lowed to occupy 
the same bond,  they may still be on the same branch,  in cont ras t  to the 
case on the Cayley tree. F igure  8a shows the probabi l i ty  d is t r ibut ion  
~'/int(,~int) for the interact ion energy Ei,,  = E (2 ) -  2E (1). As before, ~r'/int(0 ) is 
given by the probabi l i ty  x(0) for zero over lap of noninterac t ing  lines, and  
hence decreases as t - " .  The peak of the d is t r ibut ion  moves to the right 
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1 0  -4 

10 ~ 

1 1 1 1 1 1 1 1 1 1  I I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  

r 
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_=-'(b') ' ' ' ' ' ' 

1 0  - !  

10_2 

1 0  - 3  

1 0  -4 

tO ~ 

= I l i I i I i I i 

1 2 3 4 ,5 

Fig. 8. (a) Distribution of the interaction energy for two lines on the hierarchical lattice at 
b = 2 and with hard-core repulsion. F rom bot tom left to right, t increases in successive powers 
of 2 starting from t = 32. (b) Scaling plot of (a). 
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as t ~ Figure 8b shows a scaling plot of the data. The data collapse suggests 
the scaling form 

~int.k(i) = 6 ;  I Gb(i/6k) (4.5) 

where 6k is defined through (4.1). Note that Gb(X) tends to a finite value 
as x -+0 ,  though ~int.k(0) seems to be smaller by a factor 2 than t/-/int, k(1 ) 
at large k. Similar behavior is found for b = 4 and 8. 

From Eq. (4.5) for the distribution we conclude that the mean inter- 
action energy should be proportional to 6k, 

(Eint .k)  ----- C2(~ k (4.6) 

An upper bound on (Eint.k) can be obtained by restricting the two lines 
to two (given) different branches. The mean energy of the latter arrange- 
ment is given by 4)'k-1. Using Eqs. (4.3) and (4.6), we obtain, for b >1 2, 

c2 <~ 2(21 - '~ _ 1 )cl (4.7) 

From our data for (Eir, t,k ) we have determined ca for b = 2 ,  4 and 8, as 
given in Table I. The inequality (4.7) is indeed satisfied. 

4.3. Weak Repulsion 

The inequality (3.10) holds also on the hierarchical lattice. Since the 
typical fractional overlap in the ground state of one line is finite (see 
Fig. 7), at small values of rt, we expect a linear increase of the interaction 
energy with the length of the line t. Another upper bound on the inter- 
action energy is given by that of hard-core repulsion, Eq. (4.6). A crossover 
is thus expected at rt " -6 , .  Figure 9 shows scaled data for the mean inter- 
action energy against t for b = 2 and various r values. The data collapse 
confirms the scaling, 

( Eint ~ "~" (~1r (lbhir(rt/(~k) (4.8) 

where ~hir(X)~ X for x,~ 1 and crosses over to c2 at x >> 1. 
Figure 10 shows the distribution of the interaction energy at r = 0.05. 

It is seen that data for rt >> 6k become almost identical to those of hard-core 
repulsion. This property is observed to hold also for b = 4 and b = 8. 

5. REPULSIVE LINES IN (1 + 1 )  D IMENSIONS 

Our results on hierarchical lattices are in full agreement with the 
picture proposed earlier by Parisi tS~ and M6zard c91 based on their 
investigation of the problem in (1 + I ) dimensions, and thus seems to imply 
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Fig. 9. Average interaction energy of two lines on the hierarchical lattice at b = 2 .  Weak 
repulsion. 

that the behavior is quite general. There remains, however, a puzzling 
aspect. For  simplicity, let us consider the (1 + 1 )-dimensional case with an 
energy functional (1.2a). The lower end of the line is in contact  with a 
"substrate" at t = 0, but is free to move in the transverse direction. The 
ground-state energy E(x, t) of the line is then a function of the upper end 
coordinates (x, t). The ground-state line configurations at different values 
of x form tree structures, (6'~8) with roots at t =0 .  The lateral span of one 
tree is of the order of t ~, where ( = 2/3 is the roughness exponent of the line. 

tO ~ 

10 -t 

, .~ tO -2 
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I I I I I t i 
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Fig. 10. Distribution of the interaction energy of two lines on the hierarchical lattice at b = 2 
and r = 0 . 0 5  (dashed lines). F rom bot tom left to right, t increases in successive powers of 2 
starting from t = 32. Solid line shows the same data for hard-core repulsion at t = 4096. 
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When x is at the border  between two neighboring trees, there are two 
degenerate, nonover lapping ground-state configurations. The probabil i ty 
for such a situation is inversely propor t ional  to the lateral span of the tree, 
i.e., of the order of t -c, much less than the value t - "  suggested by M6zard 
and Parisi! 

We have performed Monte  Carlo transfer matrix calculations on a 
lattice version of two directed lines in (1 + 1 ) dimensions. The lines are put 
on a square lattice tilted by 45 deg. At each point a line can go either 
up-left or up-right, and picks up a r andom site energy e which takes 
value 1 with probabil i ty p and 0 with probabil i ty 1 - p .  For  hard-core 
repulsion, which is the only case considered here, two lines are allowed to 
visit the same site but not to share the same bond. In Fig. 11 we plot 
the probabilit ies t//int.,(i), i = 0 ,  1,2, for the interaction energy Ein t=  
E ~2)- 2E(11= i as a function of the length t. The data seem to confirm 

~vi,t.,(0) .-. t -~ (5.1) 

Figure 12 shows the full distribution ~r/int. t(Eint) at p = 0 . 8  in scaled 
form. Apart  from Ein t = 0, there is a good data collapse, yielding 

I//int. t (E in t )  "" 6,-1GI, + l ) ( g i n t / 6 , )  (5.2) 

where 6, is the root -mean-square  deviation of the one-line ground-state  
energy. In contrast  to the behavior  on the hierarchical lattice, the scaling 
function Gt~+t)(x) appears  to approach  zero linearly with x at small x. 
Nevertheless, the mean value of the interaction energy is still proport ional  
to di,, with c2 = (Ein t ) / f i t  " "  1.6. 

~.~ 10-t 

i=21 
, r  i 
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Fig. II. Two lines in (I + I} dimensions with hard-core repulsion. Solid lines give the 
probabilities for the interaction energy to be equal to 0, I, and 2 as a [unction of the length 
t. Dashed line indicates a power-law behavior with an exponent -2/3. 
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M6zard ~9) has shown that, with one end of the line fixed at a given 
point, thermal fluctuations in the position of the other end are propor t ional  
to the length of the line. (This proper ty  is a direct consequence of Galilean 
invariance for the corresponding Burgers equation. Ij9"2~ With the assump- 
tion that the probabil i ty for the occurrence of a lmost  degenerate yet non- 
overlapping states is of the order of t - %  this result is readily explained. 
Such an interpretation is, however, in seeming contradict ion with (5.1). 

6. CONCLUSIONS 

The main finding of the present paper  may be summarized as follows. 

(i) Degenerate ground state of  a single line. We performed explicit 
calculations of the overlap distribution Povp(q) for degenerate ground-state  
configurations and studied its scaling behavior  with respect to the length t. 
The results confirm those of earlier studies: on the Cayley tree, Povp(q) 
approaches  a sum of two delta functions at q = 0 (no overlap)  and q = 1 
(full overlap) in the limit t--* ~ ;  on the hierarchical lattice, Povp(q) 
approaches  a single delta function at q = q~ (0 < q~ < 1) in this limit, but 
there is a probabil i ty of order t-~ for no overlap, where o~ is the energy 
fluctuation exponent. Our  finding for a model with discrete bond energies 
should apply to those with a continuous distribution of bond energies 
(properly bounded at the lower end) if we replace the term "degeneracy" 
by "near-degeneracy" in the discussion. 

(ii) Two repulsive lines with one or both ends f ixed  at the same position. 
The excess energy Ein t of  the two-line system grows as the ground-state  
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energy fluctuation t ~ of a single line, in the limit t---, oo. When the strength 
of the interaction r is weak, there is a crossover from a linear behavior 
Ein  t - - - r t  for small t to the asymptotic behavior E i n  t ,~ t '~ at large t. This 
crossover is also reflected in the ground-state configuration of the two lines: 
for rt  ~ t ~ they (on the hierarchical lattice) typically form a bound state in 
the same deep valley of the one-line energy landscape; for rt  >> t '~ the two 
lines are driven to different valleys, in which case the strength of the 
interaction is no longer relevant. On the hierarchical lattice,, this picture is 
confirmed by our direct computation of the probability for no overlap (not 
presented here), which follows the behavior at r = 0  initially but crosses 
over to 1 at large t. The distribution of the interaction energy also 
approaches an r-independent form (4.5) in the large-t limit. 

(iii) A d i s c r e p a n c y  in ( 1 + 1 )  d i m e n s i o n s .  Although the general 
picture of multiple-valley energy landscape and of the crossover from 
bound to nonoverlapping states at weak repulsion is expected to carry over 
to finite-dimensional lattices, there seems to be a discrepancy in the 
probability for (almost) degeneracy of two nonoverlapping valleys. On the 
hiearchical lattice this probability decreases as t ~,o, while our Monte Carlo 
transfer matrix calculations in (1 + 1) dimensions indicate that the 
probability should decrease much faster with t, in fact as t -c, where ( is the 
roughness exponent of the line. If this is true, further work is needed to 
understand thermal fluctuations of the transverse end-to-end displacement 
of one line. 

The ground-state properties of the two-line system studied here should 
be relevant to the thermodynamic behavior of a type II superconductor 
with disorder close to the lower critical field H~I. ~-4~ In particular, the 
scaling behavior of the interaction energy Eint with the length t determines 
how the equilibrium density of flux lines varies with the external magnetic 
field H close to Hci. Our finding that, for hard-core repulsion, E~nt 
increases as t ~ confirms an earlier prediction by Nattermann and 
Lipowsky. t2~ The renormalization group (RG) analysis of ref. 3 arrived at 
a different conclusion for d >  2 (including the physical dimension d =  3). It 
would be interesting to explore whether this discrepancy is due to an insuf- 
ficient set of parameters considered in the RG analysis or is a result of 
replica symmetry breaking for the two-line system. 

APPENDIX  

In this appendix we present an approximate calculation on the Cayley 
tree for the one-line ground-state energy and its distribution. On the tree, 
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a path is uniquely determined by its end coordinate i, i =  1, 2 ..... 2'. The 
energy of the path is thus given by 

E(i )= ~ ej(i) (A1) 
j = l  

For the model specified by (2.18), E(i) obeys a binary distribution, 

~UE(m ) = C','p"(1 - p )  ..... (A2) 
From (A2) we obtain 

(E( i ) )  =pt ,  (E( i )z )  - (E ( i ) )2=p(1  - p ) t  (A3) 

The ground-state energy El t) is given by the minimum of the 2' 
energies E(i). If we assume that these energies are independent realizations 
of (A2), we arrive at the following approximate expression for the 
probability that El ~1 >/m: 

[ , ] .... 
P,(m)-~ 1 -  ~ ~Ue(n) -~exp - 2 '  ~E(n) (A4) 

n=O t1=O 

To put /~,(m) in the traveling-wave form (3.1), we consider the following 
integral representation for ~uE: 

l ~  dz 
~E(n) =~-z . .  ~ (1 - - p + z p ) '  (A5) 

A n t  a s  Z 

where S is any closed contour on the complex z-plane enclosing the origin. 
Substituting (A5) into (A4) and carrying out the sum over n, we obtain 

/5,(m) "~ exp[ - 2'I,(m) ] (A6) 

where 

I,(m ) = 2~i f s dz 1 -  z .... z - -1  ( 1 - - p + z p ) '  (A7) 

For m, t ~> 1, the integral can be evaluated using the method of steepest 
descent and the result is given by, for m < pt, 

where 

l,(m) "~ A~(m/t) e x p E - t f p ( m / t ) -  �89 In t] (A8) 

%(x)= l - p  2~(i2-x) (A9) 
p - - x  

f.(x)=xln +( l -x)  \l--~J (A10) 
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F r o m  (A6) we see that  the typical  value of E (I) is at an  m where 
2 ' I , (m)  "- 1, i.e., the very tail of  the d i s t r ibu t ion  (A2). Let eo satisfy 

fp(eo)  = in 2 ( A l l )  

E x p a n d i n g  f p ( x )  a r o u n d  x = eo a n d  keeping only  the term l inear  in x -  eo, 
we o b t a i n  

where 

2 ' l , (m)  = A(eo)  e x p E ~ ( m - e o t -  C' In t ) ]  

~k = - - f ; ( eo )  = ln F P( t ----e~ ] 
Leo(l -p)J 

and  C'  = I/(2~,). Subs t i tu t ing  (A12) in to  (A6) yields (3.1). 

(A12) 

( A l 3 )  

NOTE A D D E D  IN PROOF 

The connec t ion  be tween the directed po lymer  p rob lem on  the Cayley 
tree and  the r a n d o m  energy model ,  as discussed in the appendix ,  was no ted  
earl ier  by J. C o o k  a n d  B. Derr ida ,  J. Stat .  Phys.  63:505 (1991). 
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